Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.528
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Mol Plant Pathol ; 25(3): e13435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476108

RESUMEN

Alternaria spp. cause different diseases in potato and tomato crops. Early blight caused by Alternaria solani and brown spot caused by Alternaria alternata are most common, but the disease complex is far more diverse. We first provide an overview of the Alternaria species infecting the two host plants to alleviate some of the confusion that arises from the taxonomic rearrangements in this fungal genus. Highlighting the diversity of Alternaria fungi on both solanaceous hosts, we review studies investigating the genetic diversity and genomes, before we present recent advances from studies elucidating host-pathogen interactions and fungicide resistances. TAXONOMY: Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Pleosporales, Family Pleosporaceae, Genus Alternaria. BIOLOGY AND HOST RANGE: Alternaria spp. adopt diverse lifestyles. We specifically review Alternaria spp. that cause disease in the two solanaceous crops potato (Solanum tuberosum) and tomato (Solanum lycopersicum). They are necrotrophic pathogens with no known sexual stage, despite some signatures of recombination. DISEASE SYMPTOMS: Symptoms of the early blight/brown spot disease complex include foliar lesions that first present as brown spots, depending on the species with characteristic concentric rings, which eventually lead to severe defoliation and considerable yield loss. CONTROL: Good field hygiene can keep the disease pressure low. Some potato and tomato cultivars show differences in susceptibility, but there are no fully resistant varieties known. Therefore, the main control mechanism is treatment with fungicides.


Asunto(s)
Fungicidas Industriales , Solanum lycopersicum , Solanum tuberosum , Alternaria/genética , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología
2.
J Agric Food Chem ; 72(11): 5699-5709, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38462724

RESUMEN

Potato virus Y (PVY) is a plant virus that is known to be responsible for substantial economic losses in agriculture. Within the PVY genome, viral genome-linked protein (VPg) plays a pivotal role in the viral translation process. In this study, VPg was used as a potential target for analyzing the antiviral activity of tryptanthrin derivatives. In vitro, the dissociation constants of B1 with PVY VPg were 0.69 µmol/L (measured by microscale thermophoresis) and 4.01 µmol/L (measured via isothermal titration calorimetry). B1 also strongly bound to VPg proteins from three other Potyviruses. Moreover, in vivo experiments demonstrated that B1 effectively suppressed the expression of the PVY gene. Molecular docking experiments revealed that B1 formed a hydrogen bond with N121 and that no specific binding occurred between B1 and the PVY VPgN121A mutant. Therefore, N121 is a key amino acid residue in PVY VPg involved in B1 binding. These results highlight the potential of PVY VPg as a potential target for the development of antiviral agents.


Asunto(s)
Potyvirus , Quinazolinas , Solanum tuberosum , Potyvirus/genética , Simulación del Acoplamiento Molecular , Proteínas Virales/genética , Proteínas Virales/metabolismo , Genoma Viral , Solanum tuberosum/metabolismo , Enfermedades de las Plantas
3.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474041

RESUMEN

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Asunto(s)
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Sitios Genéticos , Enfermedades de las Plantas
4.
J Agric Food Chem ; 72(9): 5073-5087, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38377432

RESUMEN

Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, ß-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.


Asunto(s)
Phytophthora , Selenio , Selenio/farmacología , Tabaco , Membrana Celular , Metabolismo Energético , Aminoácidos/farmacología , Flavonoides/farmacología , Enfermedades de las Plantas
5.
J Virol Methods ; 326: 114905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387695

RESUMEN

Plant virus detection and identification in crops is a pillar for disease management, import of crop material, production of clean stock plants and basic plant virology studies. In this report, we present a platform for the enrichment and isolation of known or unknown viruses. This platform is based on carbon nanotube arrays inside a microfluidic device that can be a solution for the identification of low titer viruses from plants. Using our microfluidic devices, we achieved enrichment of two economically important viruses, the orthotospovirus, tomato spotted wilt orthotospovirus (TSWV) and the potyvirus, zucchini yellow mosaic virus (ZYMV). The carbon nanotube arrays integrated in these microfluidic devices are capable of trapping viruses discriminated by their size; the virus rich arrays can be then analyzed by common downstream techniques including immunoassays, PCR, HTS and electron microscopy. This procedure offers a simple to operate and portable sample preparation device capable of trapping viruses from raw plant extracts while reducing the host contamination.


Asunto(s)
Nanotubos de Carbono , Virus de Plantas , Microfluídica , Enfermedades de las Plantas
6.
Antonie Van Leeuwenhoek ; 117(1): 33, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334837

RESUMEN

Plant probiotics are live microbial cells or cultures that support plant growth and control plant pathogens through different mechanisms. They have various effects on plants, including plant growth promotion through the production of indole acetic acid (IAA), biological control activity (BCA), and production of cellulase enzymes, thus inducing systemic resistance and increasing the availability of mineral elements. The present work aimed to study the potential of Achromobacter marplatensis and Bacillus velezensis as plant probiotics for the field cultivation of potatoes. In vitro studies have demonstrated the ability of selected probiotics to produce IAA and cellulase, as well as antimicrobial activity against two plant pathogens that infect Solanum tuberosum as Fusarium oxysporum and Ralstonia solanacearum under different conditions at a broad range of different temperatures and pH values. In vivo study of the effects of the probiotics A. marplatensis and B. velezensis on S. tuberosum plants grown in sandy clay loamy soil was detected after cultivation for 90 days. Probiotic isolates A. marplatensis and B. velezensis were able to tolerate ultraviolet radiation (UV) exposure for up to two hours, the dose response curve exhibited that the D10 values of A. marplatensis and B. velezensis were 28 and 16 respectively. In the case of loading both probiotics with broth, the shoot dry weight was increased significantly from 28 in the control to 50 g, shoot length increased from 24 to 45.7 cm, branches numbers increased from 40 to 70 branch, leaves number increased from 99 to 130 leaf, root dry weight increased from 9.3 to 12.9 g, root length increased from 24 to 35.7 cm, tuber weight increased from 15 to 37.0 g and tubers number increased from 9 to 24.4 tuber, the rot percentage was reduced to 0%. The addition of both probiotic isolates, either broth or wheat grains load separately has enhanced all the growth parameters; however, better results and increased production were in favor of adding probiotics with broth more than wheat. On the other hand, both probiotics showed a remarkable protective effect against potato pathogens separately and reduced the negative impact of the infection using them together.


Asunto(s)
Celulasas , Fusarium , Ralstonia solanacearum , Solanum tuberosum , Rayos Ultravioleta , Plantas , Celulasas/farmacología , Enfermedades de las Plantas/prevención & control
7.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346851

RESUMEN

AIM: To investigate antifungal activity of the extract and major metabolite of the endophytic fungus Acrophialophora jodhpurensis (belonging to Chaetomiaceae) against crown and root rot caused by Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), as an important pathogen of tomato. METHODS AND RESULTS: The endophytic fungus A. jodhpurensis, has high inhibitory effect against R. solani AG4-HG II in vitro and in vivo. The media conditions were optimized for production of the endophyte's metabolites. The highest amounts of secondary metabolites were produced at pH 7, 30°C temperature, and in the presence of 0.5% glucose, 0.033% sodium nitrate, and 1 gl-1 asparagine as the best carbon, nitrogen, and amino acid sources, respectively. The mycelia were extracted by methanol and the obtained extract was submitted to various chromatography techniques. Phytochemical analysis via thin-layer chromatography (TLC) and nuclear magnetic resonance (NMR) spectroscopy showed that ergosterol peroxide was the major component in the extract of this endophyte. Antifungal activities of the methanolic extract and ergosterol peroxide in the culture media were studied against R. solani. Minimum inhibitory concentrations of the extract and ergosterol peroxide against the pathogen were 600 and 150 µg ml-1, respectively. Ergosterol peroxide revealed destructive effects on the pathogen structures in microscopic analyses and induced sclerotia production. Histochemical analyses revealed that it induced apoptosis in the mycelia of R. solani via superoxide production and cell death. Application of ergosterol peroxide in the leaf disc assay reduced the disease severity in tomato leaves. CONCLUSIONS: Antifungal metabolites produced by A. jodhpurensis, such as ergosterol peroxide, are capable of controlling destructive Rhizoctonia diseases on tomato.


Asunto(s)
Antifúngicos , Ergosterol/análogos & derivados , Rhizoctonia , Sordariales , Antifúngicos/farmacología , Antifúngicos/metabolismo , Extractos Vegetales/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
8.
Sci Rep ; 14(1): 2255, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355700

RESUMEN

Development of advanced pest control methods that do not rely on insecticides is an important issue for sustainable agriculture. Particularly with regards to micro pests that are not only highly resistant to various insecticides but also because we are running out of options for which insecticide to use against them, resulting in enormous economic damage worldwide. Here we report that the effectiveness of the conventional insect net can be greatly advanced by changing their color to red that helps significantly reduce pesticide use. We demonstrate the red effect using Onion thrips, Thrips tabaci a main vector of Iris Yellow Spot Virus (IYSV) and Tomato Spotted Wilt Virus (TSWV) that cause serious damage to various vegetables. New red nets succeeded in suppressing the invasion rates and damages (white spots on the leaves) in a Welsh onion greenhouse with minimum use of pesticides. We discuss how red nets are compatible with labor-saving, sustainable agriculture and the future potential of "optical pest control" based on insect color vision and its behavioral response.


Asunto(s)
Insecticidas , Thysanoptera , Animales , Enfermedades de las Plantas/prevención & control , Insectos Vectores , Insectos/fisiología , Thysanoptera/fisiología , Agricultura , Cebollas/fisiología
9.
Sci Rep ; 14(1): 2523, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360880

RESUMEN

In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known as Phytophthora infestans, still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843-1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Humanos , Enfermedades de las Plantas , Brotes de Enfermedades , Irlanda
10.
BMC Plant Biol ; 24(1): 131, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383294

RESUMEN

Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.


Asunto(s)
Inoculantes Agrícolas , Extractos Vegetales , Solanum lycopersicum , Jengibre , Animales , Polvos , Alternaria , Bacterias , Enfermedades de las Plantas/microbiología
11.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341275

RESUMEN

AIMS: The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS: Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS: This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.


Asunto(s)
Alternaria , Solanum lycopersicum , Solanum , Antifúngicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Solanum/metabolismo , Sideróforos/farmacología , Productos Agrícolas/metabolismo , Hierro , Necrosis , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
12.
Plant Physiol Biochem ; 207: 108332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224638

RESUMEN

Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.


Asunto(s)
Agaricales , Cacao , Selenio , Cacao/microbiología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Selenio/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Células Vegetales , Agaricales/metabolismo , Muerte Celular , Glutatión Peroxidasa/metabolismo , Enfermedades de las Plantas/microbiología
13.
Plant Biol (Stuttg) ; 26(2): 292-304, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170172

RESUMEN

Black Rot is a grapevine disease caused by the ascomycete Phyllosticta ampelicida. Neglected so far, this is developing into a pertinent problem in organic viticulture as resistant varieties are still lacking. Here, we follow cellular details of the infection process in the susceptible vinifera variety Müller-Thurgau and screen the ancestral European wild grapevine (V. vinifera sylvestris) for resistance to Black Rot. Using a standardized infection assay, we follow fungal development using LTSEM and quantify key stages on different hosts using fluorescence microscopy. There is considerable variation in susceptibility, which is associated with more rapid leaf maturation. Hyphal growth on different carbon sources shows a preference for pectins over starch, cellulose or xylans. In the resistant sylvestris genotypes Ketsch 16 and Ketsch 18 we find that neither spore attachment nor appressorium formation, but hyphal elongation is significantly inhibited as compared to Müller-Thurgau. Moreover, defence-related oxidative burst and accumulation of phenolic compounds is stimulated in the resistant genotypes. We arrive at a model, where more rapid maturation of the cell wall in these sylvestris genotypes sequesters pectins as major food source and thus block hyphal elongation. This paves the way for introgression of genetic factors responsible for cell wall maturation into V. vinifera to develop Black Rot-resistant varieties of grapevine.


Asunto(s)
Ascomicetos , Vitis , Vitis/genética , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Pectinas
14.
Biomacromolecules ; 25(2): 1018-1026, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38252413

RESUMEN

With the growing concern over the environmental impact and health risks associated with conventional pesticides, there is a great need for developing safer and more sustainable alternatives. This study demonstrates the self-assembly of antimicrobial and antifungal spherical particles by a dipeptide utilizing a reduced amount of copper salt compared to the commonly employed formulation. The particles can be sprayed on a surface and form an antimicrobial coating. The effectiveness of the coating against the bacteria Pectobacterium brasiliense, a common pathogen affecting potato crops, was demonstrated, as the coating reduced the bacterial load by 7.3 log. Moreover, a comprehensive field trial was conducted, where the formulation was applied to potato seeds. Remarkably, it exhibited good efficacy against three prevalent potato pathogens (P. brasiliense, Pythium spp., and Spongospora subterranea) while demonstrating no phytotoxic effects on the potatoes. These findings highlight the tremendous potential of this formulation as a nonphytotoxic alternative to replace hazardous pesticides currently available in the market.


Asunto(s)
Antiinfecciosos , Plaguicidas , Solanum tuberosum , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Antifúngicos/farmacología , Cobre/farmacología , Dipéptidos , Antibacterianos/farmacología
15.
Plant Biol (Stuttg) ; 26(2): 282-291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194355

RESUMEN

The control of Huanglongbing (HLB), one of the most destructive pests of citrus, relies heavily on the reduction of Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. An in-depth understanding of ACP feeding behaviours among citrus plants is urgent for comprehensive management of orchards. An investigation was conducted in 37 citrus orchards in HLB epidemic areas, sampling shoots in the area with aggregation feeding of ACP (ACPf) and shoots in a neighbouring area without ACP feeding (CK), to study the interaction between leaf chemical composition and ACP psyllid feeding behaviours. Results of FTIR showed a strong absorption peak intensity, mainly representing functional groups originating from cell wall components in the leaf with ACP feeding. As compared with the control, cell wall components, such as alkali-soluble pectin, water-soluble pectin, total soluble pectin, cellulose, and hemicellulose, of the cell wall of ACPf increased by 134.0%, 14.0%, 18.0%, 12.5%, and 20.35%, respectively. These results suggest that cell wall mechanical properties significantly decreased in the term of decreases in pectin performance and cellulose mechanical properties. In addition, there was a remarkably lower boron (B) content in leaves and cell wall components with ACP feeding. Further analysis indicated that leaf B content significantly affected leaf cell wall components. Taken together, we provide evidence to demonstrate that the regional distribution of nutrient imbalance in orchards could affect psyllid feeding behaviour by weakening the cell wall structure, resulting in epidemic variation in ACP. This could help us to understand the management of psyllid infections in orchards with unbalanced nutrition.


Asunto(s)
Citrus , Hemípteros , Animales , Hemípteros/fisiología , Boro , Conducta Alimentaria , Nutrientes , Pared Celular , Celulosa , Pectinas , Enfermedades de las Plantas
16.
Sci Rep ; 14(1): 1277, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218867

RESUMEN

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces "ScabyNet", an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.


Asunto(s)
Aprendizaje Profundo , Solanum tuberosum , Solanum tuberosum/genética , Enfermedades de las Plantas/microbiología , Tubérculos de la Planta/microbiología , Fenotipo
17.
Gene ; 905: 148212, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38281673

RESUMEN

Fusarium oxysporum f.sp. cepae (FOC), as basal rot fungus, is the most detrimental pathogen causing a serious threat to onion productivity in the world. In this study, we first determined FOC tolerance in seven Iranian onion cultivars, two known international onions (Texas Early Grano and Sweet Yellow Spanish), and an Allium species related to the onion (Allium asarence) based on the infection severity. Then, a transcriptional screen was performed by comparing the transcript levels of some pathogen-responsive genes (ERF1, COI1, and TIR1) and their predicted miRNAs in the sensitive (Ghermeze Azarshahr Cv.) and the resistant (A. asarence) onions to determine key genes and their miRNAs involved in the defense responses of onions to FOC. From our results, a difference was found in the COI1 and ERF1 expression 48 h after inoculation with FOC as compared to the respective 24 and 72 h. It can be explained by either special mechanisms involved in raising energy consumption efficiency or the interactive effects of other genes in the jasmonic acid (JA) and ethylene (ET) signaling pathways. Moreover, expression analysis of the pathogen-responsive genes and their targeting miRNAs identified the miR-5629, which targets the COI1 gene as a likely key factor in conferring resistance in the FOC-resistant onion, i.e., A. asarence. However, exploring the function of the miRNA/target pair is highly recommended to deeply understand the effect of the miRNA/target pair-associated pathway in the control of A. asarense-FOC interaction.


Asunto(s)
Fusarium , MicroARNs , Cebollas/genética , Fusarium/genética , MicroARNs/genética , Irán , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
18.
Fitoterapia ; 172: 105739, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952763

RESUMEN

In this study, 30 chalcone derivatives containing [1,2,4]-triazole-[4,3-a]-pyridine were designed and synthesized. The results of antibacterial activity showed that EC50 values of N26 against Xoo, Pcb was 36.41, 38.53 µg/mL, respectively, which were better than those of thiodiazole copper, whose EC50 values were 60.62, 106.75 µg/mL, respectively. The bacterial inhibitory activity of N26 against Xoo was verified by SEM. Antibacterial mechanism between N26 and Xoo was preliminarily explored, the experimental results showed that when the drug concentration was 100 mg/L, N26 had a good cell membrane permeability of Xoo, and it can inhibit the production of EPS content and extracellular enzyme content to disrupt the integrity of the Xoo biofilms achieving the effect of inhibiting Xoo. At 200 mg/L, N26 can protect and inhibit the lesions of post-harvested potatoes in vivo. The activities of N1-N30 against TMV were determined with half leaf dry spot method. The EC50 values of the curative and protective activity of N22 was 77.64 and 81.55 µg/mL, respectively, which were superior to those of NNM (294.27, 175.88 µg/mL, respectively). MST experiments demonstrated that N22 (Kd = 0.0076 ± 0.0007 µmol/L) had a stronger binding ability with TMV-CP, which was much higher than that of NNM (Kd = 0.7372 ± 0.2138 µmol/L). Molecular docking results showed that N22 had a significantly higher affinity with TMV-CP than NNM.


Asunto(s)
Chalcona , Chalconas , Oryza , Xanthomonas , Chalcona/farmacología , Chalconas/farmacología , Estructura Molecular , Simulación del Acoplamiento Molecular , Triazoles/farmacología , Pruebas de Sensibilidad Microbiana , Piridinas/farmacología , Antibacterianos/farmacología , Enfermedades de las Plantas , Oryza/microbiología , Relación Estructura-Actividad , Diseño de Fármacos
19.
Syst Appl Microbiol ; 47(1): 126476, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38113702

RESUMEN

Outbreaks of potato blackleg and soft rot caused by Pectobacterium species and more recently Dickeya species across the U.S. mid-Atlantic region have caused yield loss due to poor emergence as well as losses from stem and tuber rot. To develop management strategies for soft rot diseases, we must first identify which members of the soft rot Pectobacteriaceae are present in regional potato plantings. However, the rapidly expanding number of soft rot Pectobacteriaceae species and the lack of readily available comparative data for type strains of Pectobacterium and Dickeya hinder quick identification. This manuscript provides a comparative analysis of soft rot Pectobacteriaceae and a comprehensive comparison of type strains from this group using rep-PCR, MLSA and 16S sequence analysis, as well as phenotypic and physiological analyses using Biolog GEN III plates. These data were used to identify isolates cultured from symptomatic potato stems collected between 2016 and 2018. The isolates were characterized for phenotypic traits and by sequence analysis to identify the bacteria from potatoes with blackleg and soft rot symptoms in Pennsylvania potato fields. In this survey, P. actinidiae, P. brasiliense, P. polonicum, P. polaris, P. punjabense, P. parmentieri, and P. versatile were identified from Pennsylvania for the first time. Importantly, the presence of P. actinidiae in Pennsylvania represents the first report of this organism in the U.S. As expected, P. carotorvorum and D. dianthicola were also isolated. In addition to a resource for future work studying the Dickeya and Pectobacterium associated with potato blackleg and soft rot, we provide recommendations for future surveys to monitor for quarantine or emerging soft rot Pectobacteriace regionally.


Asunto(s)
Gammaproteobacteria , Pectobacterium , Solanum tuberosum , Dickeya , Solanum tuberosum/microbiología , Pennsylvania , Enfermedades de las Plantas/microbiología , Filogenia , ARN Ribosómico 16S/genética , Pectobacterium/genética , Gammaproteobacteria/fisiología
20.
J Microbiol Biotechnol ; 34(3): 538-546, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38146216

RESUMEN

Cinnamaldehyde is a natural compound extracted from cinnamon bark essential oil, acclaimed for its versatile properties in both pharmaceutical and agricultural fields, including antimicrobial, antioxidant, and anticancer activities. Although potential of cinnamaldehyde against plant pathogenic bacteria like Agrobacterium tumefaciens and Pseudomonas syringae pv. actinidiae causative agents of crown gall and bacterial canker diseases, respectively has been documented, indepth studies into cinnamaldehyde's broader influence on plant pathogenic bacteria are relatively unexplored. Particularly, Pectobacterium spp., gram-negative soil-borne pathogens, notoriously cause soft rot damage across a spectrum of plant families, emphasizing the urgency for effective treatments. Our investigation established that the Minimum Inhibitory Concentrations (MICs) of cinnamaldehyde against strains P. odoriferum JK2, P. carotovorum BP201601, and P. versatile MYP201603 were 250 µg/ml, 125 µg/ml, and 125 µg/ml, respectively. Concurrently, their Minimum Bactericidal Concentrations (MBCs) were found to be 500 µg/ml, 250 µg/ml, and 500 µg/ml, respectively. Using RNA-sequencing analysis, we identified 1,907 differentially expressed genes in P. carotovorum BP201601 treated with 500 µg/ml cinnamaldehyde. Notably, our results indicate that cinnamaldehyde upregulated nitrate reductase pathways while downregulating the citrate cycle, suggesting a potential disruption in the aerobic respiration system of P. carotovorum during cinnamaldehyde exposure. This study serves as a pioneering exploration of the transcriptional response of P. carotovorum to cinnamaldehyde, providing insights into the bactericidal mechanisms employed by cinnamaldehyde against this bacterium.


Asunto(s)
Acroleína/análogos & derivados , Antiinfecciosos , Pectobacterium , Pectobacterium carotovorum , Pectobacterium/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Bacterias/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA